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Abstract

A numerical procedure for the rapid prediction of the compression wave generated by a high-speed train entering a

tunnel was presented and validated by Howe et al. [Rapid calculation of the compression wave generated by a train

entering a tunnel with a vented hood, Journal of Sound and Vibration 297 (2006) 267–292]. The method was devised to deal

principally with compression wave generation in long hoods typically of length �10 times the tunnel height and ‘vented’ by

means of a series of windows distributed along the hood walls. Hoods of this kind will be needed to control wave

generation by newer trains operating at speeds U exceeding about 350 km/h. In this paper experimental results are

presented and compared with predictions in order to extend the range of applicability of the numerical method of Howe

et al. (2006) to include short hoods with lengths as small as just twice the tunnel height (the situation for most hoods

currently deployed on the Japanese Shinkansen) and for U as large as 400 km/h.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The overall pressure rise across the front of the compression wave generated when a high-speed train enters
a tunnel varies roughly as the square of the train speed U and can exceed two or three per cent of atmospheric
pressure. The strength of the acoustic pulse (or ‘micro-pressure wave’) radiated from the far end of the tunnel
when the compression wave arrives is proportional to the slope of the compression wave-front and varies as
U3 for short tunnels. It can be large enough to cause ‘rattles’ in buildings close to the tunnel exit, and its
annoyance is increased by the occurrence of nonlinear steepening of the front in modern long ‘smooth’
tunnels, which causes the pulse to emerge as a sudden, explosive ‘bang’. A well-established compression-wave
countermeasure involves the installation of an entrance ‘hood’, which usually consists of a thin-walled
extension of the tunnel portal with windows distributed along its length. High-pressure air forced out of the
windows by the entering train can cause the initial rise time of the wave to be significantly increased and
produce a more ‘gently’ rising wave-front profile. Further details of the history of hood development together
with an extensive bibliography are given by Howe et al. [1].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Parameters defining the configuration of the hood, tunnel and axisymmetric train: (a) ‘side’ view from the direction of the positive

z-axis; (b) ‘top’ view from the direction of the positive y-axis.
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A very efficient numerical algorithm (hereinafter referred to as the ‘rapid’ algorithm) was introduced in
Ref. [1] for calculating the initial form of the compression wave prior to the onset of nonlinear steepening. The
algorithm executes in a few seconds on a conventional desktop computer and takes explicit account on wave
formation of: (i) the hood-tunnel junction and the accompanying temporary ‘trapping’ of wave energy by
multiple reflections between the ends of the hood, (ii) the forcing of air out of the windows, and (iii) the
frictional drag on the train and tunnel walls. The method was validated by comparison with experiments
performed at model scale using a circular cylindrical tunnel of interior radius R fitted axisymmetrically with a
thin-walled, circular cylindrical, unflanged hood of interior radius Rh and length ‘h (see Fig. 1). It was
originally devised specifically for application to acoustically noncompact hoods, wherein the thickness of the
compression wave-front p‘h. This was examined experimentally in Ref. [1] by considering only long hoods
with ‘h ¼ 10R that are effective at train speeds U4350 km=h that will be typical in the near future. Predictions
were found to be in good agreement with data derived from a series of experiments conducted over a period of
years with U as large as 425 km/h.

However, regular train speeds in Japan are already approaching 350 km/h, whereas much of the high-speed
network is equipped with ‘short’ hoods with ‘h�2R that have been optimized for lower speed operations. It is
therefore of great practical interest to examine the extent to which the rapid prediction method of Ref. [1] can
be applied to short hoods. In this paper, we report a successful comparison of predictions with a new set of
measurements of compression wave formation in short vented and unvented hoods at U ¼ 350 and 400 km/h.
It is concluded for these speeds that it is never legitimate to treat the hood as a compact acoustic element when
‘h is as small as 2R.

The configurations of the experimental hood, tunnel and train are defined in Section 2, and the experimental
procedure is outlined in Section 3. Comparisons of theory and experiment for unvented hoods are presented in
Section 4, including a discussion of the compact-hood approximation. Short vented hoods are discussed in
Section 5.

2. The model scale configuration

2.1. Specification of the short hoods

Take the origin of coordinates ðx; y; zÞ at the centre O of the hood entrance plane as in Fig. 1, with the
negative x-axis along the common axis of symmetry of the tunnel and hood. Each window is nominally
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rectangular with sides of length ‘x parallel to the tunnel axis and ‘y in the azimuthal direction. For the case
illustrated in the figure there are three windows distributed in a single row along the hood wall, with the
centroid of the kth window of area Ak ð¼ ‘xk � ‘ykÞ at ðxk; 0;RhÞ; �‘hoxko0 (along the line of intersection of
the xz-plane in z40 with the hood). In the usual arrangement an axisymmetric model train is projected into
the tunnel along a tightly stretched wire that passes smoothly through a cylindrical channel along the train
axis. The ‘top’ view in Fig. 1b shows the wire displaced a distance zt40 from the tunnel axis towards the

windows in the z-direction. The two cases zt40 ðzto0Þ therefore correspond, respectively, to a train travelling
along near (far) tracks relative to the windows.

To calculate the compression wave prior to the onset of nonlinearity the tunnel is assumed to extend to
x ¼ �1. To a good approximation predictions are independent of window shape when ‘x�‘y and
‘x‘y5Ah � pR2

h ¼ hood cross-sectional area. Long, slit-like windows must be approximated by a linear
sequence of small windows. The compression-wave algorithm of [1] will be applied to the three short hoods
illustrated in Fig. 2, involving a model scale tunnel in the form of a circular cylindrical duct of internal radius
R (¼ 50mm in the experiment) fitted axisymmetrically with a thin-walled, circular cylindrical hood of internal
radius Rh ¼ 1:25R, length ‘h ¼ 2R and wall thickness ‘w ¼ 0:06R, with an unflanged opening. The individual
hood characteristics are defined in Table 1.
Fig. 2. Schematic of the three experimental short hoods of length ‘h ¼ 2R: (i) unvented, (ii) one window with ‘x ¼ 0:6R; ‘y ¼ 0:4R, (iii)

long slit with ‘x ¼ 1:5R; ‘y ¼ 0:4R.



ARTICLE IN PRESS

Table 1

Hood window characteristics

Hood Windows Comments

(i) None

(ii) One: ‘x ¼ 0:6R; ‘y ¼ 0:4R

(iii) Slit: ‘x ¼ 1:5R; ‘y ¼ 0:4R Modelled numerically as two equal

adjacent windows with ‘x ¼ 0:75R
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2.2. The model scale experimental train

The circular cross-section of the axisymmetric train has constant radius h and area Ao ¼ ph2 except within
a distance L of the front of the train, where the area ATðsÞ varies with distance s from the nose tip. The nose
region is ellipsoidal with radius

r ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

L
2�

s

L

� �r
; 0osoL, (1)

so that, near the front of the train

AT ðsÞ

Ao

¼

s

L
2�

s

L

� �
; 0osoL;

1; s4L:

8<
: (2)

The overall length of the experimental train was 1242mm, and

h ¼ 22:35mm; L ¼ 67:05mm, (3)

making the nose ‘aspect ratio’ ¼ L=h ¼ 3. In this case the ‘blockage’ Ao=A ¼ 0:2, where A ¼ pR2 is the
cross-sectional area of the tunnel, which corresponds approximately to the situation at full scale. The
experimental train was fitted with a similarly shaped ‘tail’ which, however, does not contribute to
the formation of the compression wave-front. Eq. (2) may therefore be assumed to apply for all s40 when
used for calculating the compression wave-front.
3. Laboratory measurements

3.1. Experimental apparatus

Model scale experiments were conducted at the Railway Technical Research Institute in Tokyo using the
apparatus illustrated schematically in Fig. 3. It is similar to that used by Howe et al. [2] to investigate
compression wave formation, but with improvements that permit operation at much higher train speeds in a
longer tunnel. In the present experiment the uniform section of the tunnel consists of a 7m long horizontal,
circular cylindrical pipe made of hard vinyl chloride, with inner and outer diameters, respectively, equal to 100
and 114mm. The axisymmetric model train is projected into the tunnel by means of a four-stage friction drive
‘launcher’ involving four pairs of vertically aligned wheels; the train was guided along a 5mm diameter taut
steel wire extending along the tunnel. The maximum possible launch speed is about 500 km/h (Mach number
�0:41), the actual speed being controlled by varying the rates of rotation of the drive wheels.

The hood consists of a circular cylindrical, vinyl chloride pipe of inner and outer diameters equal to 125 and
131mm, and of wall thickness 3mm (so that ‘w ¼ 0:06R). A 106mm long collar at the inner end of the hood
facilitates an airtight and smooth mating with the circular cylindrical tunnel. When in place the hood and
collar have an overall length of 206mm, and the ‘working length’ ‘h of the hood is 100mm. The overall length
of the tunnel and hood ð�7:2mÞ was chosen to ensure that measurements of the compression wave were not
influenced by reflections from the distant tunnel exit. The three hood types (i)–(iii) of Fig. 2 were realized by
cutting a horizontal slot of azimuthal width 20mm in the hood wall, extending inwards from the entrance
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Fig. 4. Hood (iii) with an axisymmetric model train travelling along the ‘far’ track.

Fig. 3. Schematic of the experimental apparatus.
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plane an axial distance of 75mm; the ‘open’ section of the slot was adjusted by inserting prefabricated, flush-
fitting inserts at both ends of the slot. Care was taken to ensure smooth and airtight fits of the inserts.

There is an 8.9m long ‘open’ section between the launcher and the hood, which is large enough to ensure
that spherically spreading pressure waves generated during the rapid acceleration of the train are negligible at
the hood entrance. On emerging from the far end of the tunnel the train is brought to rest without damage by a
‘catcher’ that slides along the steel wire.

The model train was an axisymmetric body fabricated from a nylon plastic material to the size and shape
specified in Section 2.2. The steel guide-wire passes axisymmetrically through a cylindrical hole of diameter
5.5mm in the model. The wire was displaced a distance of 19mm from the tunnel axis either towards or away
from the slot in order to simulate respectively ‘near’ and ‘far’ operations in a double-track tunnel. The
photograph (Fig. 4) shows the arrangement for hood (iii) when the train is far from the slit. For these
dimensions the blockage Ao=A ¼ 0:2 (or 0.198 if account is taken of the cross-sectional area of the guide-
wire), which is typical of the larger values arising in practice, where for high-speed operations ðU4200 km=hÞ
Ao=A is usually restricted to the range 0.12–0.22.

The standard tunnel cross-section on the Japanese high-speed Shinkansen is 63m2. When this is doubled to
take account of the image tunnel in the ground plane, the equivalent circular cylindrical tunnel has radius
6.35m. It therefore follows that, when the model scale radius R ¼ 50mm, the tests reported here are at 1

127
of

full scale.
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3.2. Measurement procedures

Small permanent magnets made of neodymium were inserted in the tail of the model train. The train speed
was measured by detection of the magnetic field as the tail passed through two wire loops (see Fig. 3) placed
4m apart, one in front and the other to the rear of the hood entrance.

The pressure within the tunnel was measured by two Kulite Semiconductor Products XCS-190-5G

transducers, flush mounted in the tunnel wall at distances of 1.1 and 2.1m from the entrance
plane of the hood. The pressure data were passed through a TEAC SA-59 amplifier, digitized using a
12-bit analogue-to-digital converter with a sampling rate of 25 kHz per channel, and stored in a personal
computer. The pressure gradient (qp=qt) was calculated using a simple central difference scheme after high-
frequency components ð44 kHzÞ of the measured pressure were removed using a fast Fourier transform
algorithm.

The measurements were made over a period of about a month during which weather conditions
varied considerably. The temperature and atmospheric pressure were recorded for each experimental
‘run’ and later used to calculate the mean air density from the equation of state of an ideal gas. This was
needed for use in the theoretical equations. The overall error of the speed measurement is estimated to
be no more than about 0.5%. It was also estimated that the tolerance error in the train cross-section is
about 1%. Hence, because the compression wave amplitude is proportional to U2Ao=A, it can be concluded
that the overall errors in measurements of the pressure and pressure gradient are, respectively, of order
2% and 3%.
4. The unvented hood

4.1. Formal representation of the pressure wave

The rapid algorithm of [1] predicts the initial form of the compression wave in the tunnel just ahead of the
entering train. In this region the unsteady pressure p rapidly reduces to a plane propagating wave and can be
expressed in the form

p ¼
roU2

ð1�M2Þ

Ao

A
1þ

Ao

A

� �
F tþ

x

co

� �
. (4)

In this formula ro; co are, respectively, the mean density and sound speed of the air in the tunnel, M ¼ U=co is
the train Mach number, and Fðtþ x=coÞ is a nondimensional function (exhibiting a weak dependence on
Reynolds number) that describes the compression wave profile and accounts for the details of the interaction
of the train nose with the tunnel-hood portal and with turbulence in the separated flow over the train to the
rear of the nose (see Ref. [1] for further details).

The wave profile is only weakly dependent on the value of the sound speed co, which we shall take
to be 340m/s. However, the dependence on mean density ro is more critical; the recorded mean air
density varied in the range 1.154–1:194 kg=m3 during the period of about a month when the measurements
were made, and proper account must be taken of this in Eq. (4) when comparing theoretical predictions with
experiment.

To understand the theoretical dependence on turbulence friction it is convenient to refer forward to the
results shown in Fig. 5 for an unvented hood and to Eqs. (8) and (9). The train nose cuts the entrance plane
x ¼ 0 of the hood at t ¼ 0. The experimental and theoretical pressures are plotted as functions of the
nondimensional time U ½t�=R, where ½t� ¼ tþ x=co is the nominal retarded time. In both cases shown in the
figure the main pressure rise is complete at U ½t�=R � 4, following which the pressure continues to rise slowly
and effectively as a linear function of the retarded time. The characteristics of the main pressure rise at the
wave-front are independent of the viscosity and thermal conductivity of the air, so that there is dynamic
similarity with full scale at equal values of the Mach number. However, the subsequent linear pressure increase
is proportional to the frictional drag distributed over the cylindrical sections of the train and walls of the hood
and tunnel wetted by the turbulent flow; the lengths of these sections increase linearly with time and are
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Fig. 5. Measured pressure ðnnnÞ and pressure gradient (	 	 	) profiles and corresponding predictions (——) for hood (i) and the model

scale ellipsoidal train nose defined by Eqs. (1)–(3) when zt ¼ 0:38R: (a) U ¼ 349km=h, ro ¼ 1:194kg=m3; (b) U ¼ 400km=h,
ro ¼ 1:182kg=m3.
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approximately equal to Ut� L at time t after the passage of the train nose into the hood (Fig. 1b). The surface
drag per unit wall area is nominally equal to rov2� where v� is the wall friction velocity (which takes different
but approximately constant values for the surfaces of the train and the tunnel). In calculating the drag (using
equations equivalent to Eqs. (8) and (9)) it is assumed that v� ¼ mU1 where U1 is the mean flow velocity
relative to the respective surface and m is a friction factor which is taken to be constant. Because the Reynolds
numbers at model and full scale cannot normally be the same there cannot be perfect similarity in the
turbulence drag component of the pressure rise. The best overall agreement between model scale
measurements and the predicted drag component of the pressure is obtained by taking m ¼ 0:053; 0:047,
respectively, for the two cases where U�350; 400 km=h (see Ref. [1]), and these values are used in the results
reported in this paper.

4.2. Comparison of theory and experiment for Hood (i)

Fig. 5 illustrates a comparison of theory and experiment for hood (i) and the ellipsoidal nose train defined
by Eqs. (1)–(3) with track offset zt ¼ 0:38R for the two cases:

ðaÞ U ¼ 349 km=h ðM ¼ 0:29Þ; ro ¼ 1:194 kg=m3,

ðbÞ U ¼ 400 km=h ðM ¼ 0:33Þ; ro ¼ 1:182 kg=m3.



ARTICLE IN PRESS
M.S. Howe et al. / Journal of Sound and Vibration 311 (2008) 254–268 261
The pressure p and the pressure ‘gradient’ qp=qt are plotted against U ½t�=R, where ½t� ¼ 0 as the nose enters the
hood. The variations in the pressure gradient govern the subjective influence of the wave in the tunnel, and
would also determine the amplitude of the micro-pressure wave in the absence of nonlinear wave steepening.
Theory and experiment are in accord up to U ½t�=R�14, after which the measurements are affected by the
passage of the train nose past the pressure transducer.
4.3. Formulae for the compact approximation

The pressure wave begins to form just before the train nose enters the hood. The nose crosses
the hood in time �2R=U and the wave-front is fully formed when t�4R=U , which is fast enough
for the initial displacement of air in the portal to be regarded as irrotational. The characteristic
width of the wave-front is roughly the same as the width of the first peak in qp=qt, i.e. of order
2R=M, which is about three times the length of the hood. This suggests that it might be permissible to
regard the hood as being acoustically compact for the purpose of calculating the compression wave.
To check this hypothesis we must first recall the appropriate compact-hood formulae for the compression
wave.

In the compact approximation the irrotational, wave-front component of the pressure, pI say, is determined
by Howe et al. [2] and Howe [3]

pI ðx; tÞ �
roU2

Að1�M2Þ
1þ

Ao

A

� �Z 1
�1

qj�

qx0
ðx0; 0; ztÞ

qAT

qx0
ðx0 þU ½t� �M‘0Þdx0, (5)

where j�ðxÞ is the unique solution of Laplace’s equation that represents the velocity potential of a
hypothetical, uniform incompressible flow out of the tunnel and hood satisfying

j�ðxÞ � x� ‘0 for jxjbR inside the tunnel;

� �A=4pjxj for jxjbR outside the portal:

)
(6)

The length ‘0 is the Rayleigh end-correction of the portal [4,5].
The functional form of j�ðxÞ is known only for flow from a thin-walled, circular cylindrical portal [3]. In the

present case it must be determined numerically (Fig. 6, also only in the benign approximation ‘w ¼ 0), from
which the end-correction is found to be negative and given by ‘0 � �0:17R. According to Eq. (5) the regions of
the most rapid variations of qj�=qx govern the shape of the compression wave-front profile, and Fig. 6b
illustrates how these variations occur in the vicinities of the hood entrance and the junction of the tunnel
and hood.

When the train nose has passed into the tunnel qj�=qx0 ¼ 1 for those values of x0 in Eq. (5) where
qAT=qx0a0, so that the irrotational pressure pI yields an overall constant value for the net pressure rise across
the wave-front equal to

roU2

ð1�M2Þ

Ao

A
1þ

Ao

A

� �
,

which is equal to the coefficient in the ‘rapid’ representation (4) of the compression wave. The linear rise in
pressure to the rear of the wave-front produced by the frictional drag is denoted by pDðx; tÞ. The total drag
increases linearly with time because the length of the turbulent zone (� the length of the train within the tunnel
and hood) increases at the constant speed U of the train. This very low-frequency pressure wave source may
always be regarded as compact and can be expressed as the following special case of the corresponding
formulae given in Ref. [1]:

pDðx; tÞ ¼ pDHðx; tÞ þ pDTðx; tÞ, (7)
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Fig. 6. (a) The streamline pattern for the hypothetical potential flow from hood (i) determined by the harmonic function j�ðxÞ; (b)
comparison of the variations of qj�=qx and �R q2j�=qx2 along zt ¼ 0 ð	 	 	Þ and zt ¼ 0:38R (——).
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where

pDHðx; tÞ ¼
m2ro

2Ah

ðLRh
U2

HW þ LhU2
HTÞ

Uðtþ x=coÞ � L�Mð‘0 � ‘EA=AhÞ

1�MA=Ah

� �
þ

��

�
Uðtþ x=coÞ � L�Mð‘0 � ‘EA=AhÞ

1�MA=Ah

� ‘h

� �
þ

	

þ
Uðtþ x=coÞ � L�Mð‘0 þ ‘EA=AhÞ

1þMA=Ah

� �
þ

�

�
Uðtþ x=coÞ � L�Mð‘0 þ ‘EA=AhÞ

1þMA=Ah

� ‘h

� �
þ

	

, ð8Þ
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pDTðx; tÞ ¼
m2ro

2A
ðLRU2

TW þ LhU2
TTÞ

Uðtþ x=coÞ � L

1�M
� ‘h

� �
þ

�

þ
Uðtþ x=coÞ � L� 2M‘0

1þM
� ‘h

� �
þ



, ð9Þ

in which ðxÞþ ¼ xHðxÞ (HðxÞ being the Heaviside step function),

LRh
¼ 2pRh; LR ¼ 2pR; Lh ¼ 2ph, (10)

are the respective perimeters of the hood, tunnel and uniform section of the train, ‘E ¼ ‘
0 þ ‘hð1�A=AhÞ,

and the velocities UTW; UHW; UTT; UHT are defined by

UTW ¼
AoU

ðA�AoÞ
1�

MA

ðA�AoÞ
þ

M2Að2A�AoÞ

2ðA�AoÞ
2

� 

,

UHW ¼
AoU

ðAh �AoÞ
1�

MAh

ðAh �AoÞ
þ

M2Ahð2Ah �AoÞ

2ðAh �AoÞ
2

� 

,

Fig. 7. Measured pressure (nnn) and pressure gradient (	 	 	) profiles compared with predictions of the compact approximation (——)

for hood (i) and the model scale ellipsoidal train nose defined by Eqs. (1)–(3) when zt ¼ 0:38R: (a) U ¼ 349km=h, ro ¼ 1:194kg=m3; (b)

U ¼ 400km=h, ro ¼ 1:182kg=m3.
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UTT ¼
AU

ðA�AoÞ
1�

MAo

ðA�AoÞ
þ

M2Aoð2A�AoÞ

2ðA�AoÞ
2

� 

,

UHT ¼
AhU

ðAh �AoÞ
1�

MAo

ðAh �AoÞ
þ

M2Aoð2Ah �AoÞ

2ðAh �AoÞ
2

� 

. (11)

As already noted (Section 4.1), the absence of Reynolds number similarity between full scale and the model
scale experiments implies that model scale predictions of pD will not necessarily supply the proper contribution
of drag to the overall pressure signature at full scale (see Refs. [6,1]).

4.4. Comparison of the compact approximation with experiment

Comparisons of the compact approximation

pðx; tÞ ¼ pI ðx; tÞ þ pDðx; tÞ

for cases (a) and (b) of Section 4.2 are displayed in Fig. 7. It is evident, that although the compact predictions
are qualitatively correct there are significant mismatches in phase and amplitude in the critical region of the
compression wave-front, particularly noticeable when theory and experiment are compared for qp=qt. These
mismatches are an indication that important contributions to the overall phase of the wave-front are still
dependent on multiple reflections, even for such a short hood. These multiple reflections are treated explicitly
Fig. 8. Measured pressure ðnnnÞ and pressure gradient ð	 	 	Þ profiles and corresponding predictions (——) for hood (ii) and the model

scale ellipsoidal train nose defined by Eqs. (1)–(3) when zt ¼ 
0:38R: (a) ‘near’ window, U ¼ 350km=h, ro ¼ 1:176kg=m3; (b) ‘far’

window, U ¼ 350km=h, ro ¼ 1:174kg=m3.
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Fig. 9. Measured pressure ðnnnÞ and pressure gradient ð	 	 	Þ profiles and corresponding predictions (——) for hood (ii) and the model

scale ellipsoidal train nose defined by Eqs. (1)–(3) when zt ¼ 
0:38R and U ¼ 400km=h: (a) ‘near’ window with ro ¼ 1:177kg=m3; (b)

‘far’ window with ro ¼ 1:173kg=m3.
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in the rapid algorithm of [1] (as exemplified by the excellent agreement in Fig. 5), but are not (of course)
included in the compact approximation of Section 4.3. A detailed discussion of the effect on the compression
wave of the multiple reflections is given in Section 1.2 of [1].

5. Short hood with a window or slit-opening

5.1. Hood (ii)

Hood (ii) has one rectangular window of sides 0:6R� 0:4R centred on the midpoint of the hood at x ¼ �R.
Predictions of the rapid algorithm are compared with experiment for near and far windows (zt ¼ 
0:38R) in
Figs. 8 and 9 when

Fig: 8 : U ¼ 350 km=h; ðaÞ ro ¼ 1:176 kg=m3; ðbÞ ro ¼ 1:174 kg=m3,

Fig: 9 : U ¼ 400 km=h; ðaÞ ro ¼ 1:177 kg=m3; ðbÞ ro ¼ 1:173 kg=m3.
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The algorithm determines the acoustic effect of a window in three stages: first a self-consistent
calculation is made of the unsteady hydrodynamic volume flow of air through each window;
second, this volume flow is used to define the time-dependent strength of an acoustic point source

located at the position of the nominal centroid of the window in an otherwise rigid-walled hood;
finally, the radiation from the source is modelled analytically as two equal amplitude plane acoustic
waves propagating in both directions in the hood from the source (subsequently experiencing multiple
reflections from the ends of the hood and multiple partial transmissions across the hood-tunnel junction
into the tunnel).

Such a treatment would be expected to provide a good approximation when the hood length ‘h greatly
exceeds the hood diameter 2Rh. The remarkable agreement between theory and experiment exhibited in Figs. 8
and 9 demonstrates, however, that the rapid model continues to be of excellent utility at least down to
‘h ¼ 2Ro2Rh.

5.2. Hood (iii)

Further confirmation of the validity of the rapid algorithm for short hoods is obtained from the
comparisons with experiment presented in Figs. 10 and 11 for hood (iii). The ‘window’ consists of an open-
ended slit of length 1:5R and width 0:4R. This is too long to be modelled directly by the ‘point source’ theory
of [1], and the method is applied after first replacing the slit by two equal adjacent rectangular windows of
dimensions 0:75R� 0:4R, with centroids at x ¼ �0:375R and �1:125R.
Fig. 10. Measured pressure ðnnnÞ and pressure gradient ð	 	 	Þ profiles and corresponding predictions (——) for hood (iii) and the model

scale ellipsoidal train nose defined by Eqs. (1)–(3) when zt ¼ 
0:38R and U ¼ 350km=h: (a) ‘near’ slit with ro ¼ 1:171kg=m3; (b) ‘far’ slit

with ro ¼ 1:185kg=m3.
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Fig. 11. Measured pressure ðnnnÞ and pressure gradient ð	 	 	Þ profiles and corresponding predictions (——) for hood (iii) and the model

scale ellipsoidal train nose defined by Eqs. (1)–(3) when zt ¼ 
0:38R: (a) ‘near’ slit when U ¼ 400km=h, ro ¼ 1:168kg=m3; (b) ‘far’ slit

when U ¼ 401km=h, ro ¼ 1:189kg=m3.
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The figures, respectively, compare the influences of a near and a far slit on the compression wave for
U ¼ 350 km=h and U�400 km=h. In all cases the theory captures the principal features of the wave profiles, in
particular the variations of the subjectively important pressure gradient qp=qt.

6. Conclusion

The rapid prediction theory presented in Ref. [1] was originally devised to deal with the problem of
compression wave generation by a train entering a long, vented hood, typically of length around 10 times the
tunnel height. Acoustically non-compact hoods of this kind will be used more frequently in the future for
newer trains operating at very high speeds. For long hoods it is permissible to model the acoustic effect of a
window by replacing it by a point source that radiates plane propagating waves within the hood. The same
approximation must fail for very short hoods. But, our results confirm that the theory remains applicable for
hood lengths as short as 2R and train speeds U at least as large as 400 km/h. The thickness of the compression
wave-front is then �6R which, although much larger than the hood length, is not large enough for the hood to
be regarded as acoustically compact. For such hoods accurate predictions can be made for long slit-like
windows (extending over much of the length 2R of the hood) by using the ‘rapid’ algorithm with the slit
replaced by a linear array of smaller windows. This is significant because the method may now be applied to
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update the designs of the many short hoods already in use on existing networks, for example by means of the
optimization procedure proposed by Howe [7].
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